

PII: S0957-4166(96)00451-X

Asymmetric Synthesis with Diphenylphosphine Oxides: Bicyclic Aminals and Oxazolidines as Chiral Auxiliaries

Peter O'Brien and Stuart Warren*

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW England

Abstract: Syntheses of six novel phosphine oxide chiral auxiliaries are described. The auxiliaries are composed of the diphenylphosphinoyl (Ph₂PO) group and either proline-derived bicyclic aminals or norephedrine-derived oxazolidines. One auxiliary is used in the synthesis of an optically active β -hydroxy phosphine oxide. Copyright © 1996 Elsevier Science Ltd

Introduction

Optically active β -hydroxy phosphine oxides like 2 have been used to synthesise enantiomerically enriched unsaturated α -amino acids, ¹ allylic alcohols and sulfides, ^{2,3} alkenyl oxazolidinones ⁴ and cyclopropyl ketones. ⁵ Of the many asymmetric methods that we have used to make optically active β -hydroxy phosphine oxides 2 (e.g. epoxidation, ⁶ dihydroxylation, ⁷ chiral auxiliary attached to electrophile in $1 \rightarrow 2^8$), the one that has received least attention so far is the use of the phosphine oxide as the chiral auxiliary. Our initial contribution ² in this area utilised a chiral auxiliary which had a stereogenic centre at phosphorus but more recent attention ⁹ has focussed on the use of phosphepin oxides such as 4, a new type of chiral auxiliary.

As well as developing modified phosphine oxides as chiral auxiliaries (e.g. 4), we wanted to make diphenylphosphine oxides with a chiral auxiliary built in to some other part of the molecule. In this way, we would be able to utilise our acquired synthetic experience with the diphenylphosphinoyl

group.¹⁰ We now report syntheses of a number of new diphenylphosphine oxides **5-10** which contain proline-derived aminals¹¹ or norephedrine-derived oxazolidines¹²⁻¹⁵ as masked aldehyde chiral auxiliaries. To date,

oxazolidine 8 has proved to be the most useful compound and its successful application to the synthesis of an optically active β -hydroxy phosphine oxide is also described in this paper. ¹⁶

Synthesis of Diphenylphosphinoyl Aminals

Phosphine oxide 11, obtained by Dess-Martin periodinane¹⁷ oxidation of the corresponding known¹⁸ alcohol, was condensed with diamine (S)-12 to give a 65% yield of a single diastereomer of phosphine oxide aminal 5. This was assigned as the *exo* diastereomer by comparison with similar condensations carried out by us⁸ and by Mukaiyama.¹¹ Our synthesis of β -keto phosphine oxide 7 has been described elsewhere.^{8c}

Synthesis of Diphenylphosphinoyl N-Tosyl Oxazolidines

For the synthesis of each of phosphine oxides 6, 8 and 10, we used a different strategy and started with the known^{13a} oxazolidine *cis*-14. It was synthesised in 83% yield by condensing *N*-tosyl norephedrine 13¹⁹ with acrolein diethyl acetal using a procedure described by Scolastico;²⁰ the single alkenyl oxazolidine obtained was identified as *cis*-14 by 500 MHz NOESY analysis. Alkene *cis*-14 was dihydroxylated²¹ using the Sharpless-style racemic dihydroxylation protocol developed recently in our laboratory²² to give an 88% yield of a 72:28 mixture of 1,2-diols *syn*- and *anti*-15. The relative stereochemistry of 1,2-diols 15 was established by conversion into the dithiane (*S*)-16 {[α]_D -2.6 (*c* 1.2 in MeOH); lit.,²³ [α]_D +6.0 (*c* 1.08 in MeOH) for the dithiane (*R*)-16}.

Reagents: (i) CH₂=CHCH(OEt)₂, cat. PPTS, benzene, reflux, 2.5 h; 83%; (ii) cat. OsCl₃, cat. quinuclidine, K₃Fe(CN)₆, K₂CO₃, t-BuOH-water (1:1), rt, 20 h; 88%; (iii) propan-1,3-dithiol, BF₃•Et₂O, CH₂Cl₂, rt, 48 h; 34%; (iv) 2 eq Et₃N, SOCl₂, CH₂Cl₂, 0 °C → rt, 1 h; 99%; (v) NalO₄, cat. RuCl₃, CCl₄-MeOH-water (1:1:1), rt, 12 h; 100%; (vi) (a) Ph₂PLi, THF, −30 °C → rt, 1.5 h (b) cat. conc H₂SO₄, water, 16 h (c) H₂O₂; 82%

Introduction of the diphenylphosphinoyl group was achieved by converting 1,2-diols 15 into their corresponding cyclic sulfates 18²⁴ and reacting them with lithium diphenylphosphide (followed by subsequent oxidation). Initially, using Sharpless's conditions, ²⁵ 1,2-diols 15 were transformed into a mixture of four cyclic sulfites 17. Then, oxidation of these with sodium periodate and ruthenium (III) chloride afforded a 72:28 mixture of cyclic sulfates syn- and anti-18 (99% yield over the two steps). When we reacted this mixture of cyclic sulfates with lithium diphenylphosphide (prepared according to the method of Ashby²⁶), all of the starting material was consumed (by TLC); treatment of the resulting mixture with water and catalytic concentrated sulfuric acid overnight (according to Sharpless's procedure²⁷) and working the reaction up with

hydrogen peroxide gave an 82% yield of hydroxy oxazolidines syn- and anti-19 (70:30) after chromatography. The opening of cyclic sulfates with other phosphorus nucleophiles has been described before²⁸ but this reaction has never been used to synthesise β -hydroxy phosphine oxides. The corresponding epoxide (made using a low yielding m-CPBA epoxidation of 14 or starting from 1,2-diols 15) failed to react with lithium diphenylphosphide even in the presence of boron trifluoride; cyclic sulfites 17 were similarly unreactive.

Reagents: (i) Dess-Martin periodinane, CH_2Cl_2 , 0 °C, 12 h; 55%; (ii) (a) BuLi, THF, 0 °C, 30 min (b) MsCl (c) BuLi; 52%; (iii) L-selectride[®], THF, -78 °C, 2 h; 93%

Dess-Martin periodinane 17 oxidation of the mixture of hydroxy oxazolidines 19 afforded β -keto phosphine oxide 8 in 55% yield which was better than the 18% yield obtained using Swern oxidation. 29 In contrast, sequential treatment of the same mixture with n-butyllithium, mesyl chloride and then n-butyllithium again generated a 52% yield of only one geometric isomer (presumably E) of vinyl phosphine oxide 10. Reduction of vinyl phosphine oxide 10 with L-selectride $^{(8)}$ gave phosphine oxide 6.

Synthesis of a Diphenylphosphinoyl N-Boc Oxazolidine

In order to synthesise N-Boc oxazolidine 9, we adopted an approach that was similar to our synthesis of aminal 78c but different from that used to make the N-tosyl oxazolidines. First of all, (-)-norephedrine was condensed with methyl glyoxylate³⁰ to give a 50:50 mixture of oxazolidines 20. Then, Boc₂O was added slowly over a period of hours to a refluxing ethyl acetate solution of 20 to give an 81% yield of a single diastereomer of N-Boc oxazolidine 21. This was confirmed as the expected cis isomer by 500 MHz NOESY analysis and, in any case, the procedure is the same as that used by Agami to make the corresponding ethyl ester.¹⁴ Finally, an acylation reaction between lithiated methyldiphenylphosphine oxide and methyl ester cis-21 afforded a 51% yield of N-Boc oxazolidine 9.

Reagents: (i) OHCCO₂Me, toluene, Dean-Stark, reflux, 1 h; 100%; (ii) EtOAc, reflux, addition of Boc_2O over 3 h; 81%; (iii) $Ph_2P(O)Me$, BuLi, THF, -78 °C; 51%

Synthetic Use of N-Tosyl Oxazolidines: Stereocontrolled Routes to R or S β -Hydroxy Phosphine Oxides

Stereoselective reductions of keto oxathianes,³¹ keto oxazines,³² N-tosyl keto oxazolidines^{13a} and N-Boc keto oxazolidines^{14,15} have all been reported before. In particular, Scolastico has described the selective reduction of N-tosyl keto oxazolidines to each diastereomer of the corresponding alcohols using either chelation controlled reaction conditions (L-selectride[®] in the presence of magnesium bromide etherate) or non-chelation (Felkin³³) controlled reaction conditions (L-selectride[®] in the presence of the crown ether, Kriptofix $211^{®}$).^{13a} We imagined that we could use such complementary reduction conditions for the selective synthesis of β -hydroxy phosphine oxides syn- and anti-19.

With this in mind, β-keto phosphine oxide **8** was reduced using a variety of conditions (see Table); the sense of asymmetric induction was easily deduced because we had already synthesised hydroxy oxazolidines **19** from 1,2-diols **15** of known relative stereochemistry. In the cases where reduction had occurred (entries 2-5), the reactions were always *syn* selective. Lithium aluminium hydride completely consumed the starting material but the expected hydroxy oxazolidines were not observed in the ¹H NMR of the crude reaction mixture (entry 1). With L-selectride[®] as the reducing agent, the conversion was low (entries 2-3) but with sodium borohydride, all of the starting material reacted (entries 4-5). From the Luche reduction³⁴ (entry 5), with what became our optimised reduction conditions, we obtained a 60% yield of hydroxy oxazolidine *syn*-**19** after chromatography. In contrast, reductions of the corresponding keto aminal **7** with a range of reducing agents [e.g. NaBH₄, NaBH₄/CeCl₃•7H₂O, LiAlH₄, LiAlH₄/ZnCl₂, Zn(BH₄)₂] failed to generate any hydroxy aminal whatsoever.

Table: Reduction of β-Keto Phosphine Oxide 8 to Hydroxy Oxazolidines 19

Entry	Reducing Agent	Solvent	Temp (°C)	SMa: Productsb	syn-19: anti-19b
1	LiAlH ₄	THF	0	c	c
2	L-selectride®	THF	-78	44 : 56	95 : 5
3	L-selectride® / MgBr2•Et2O	THF	-78	85:15	95 : 5
4	NaBH ₄	EtOH	rt	No SM	88:12
5	NaBH ₄ / CeCl ₃ •7H ₂ O	EtOH	-78	No SM	95 : 5

^a Starting material; ^b By ¹H NMR; ^c Expected alcohols 19 were not observed in the ¹H NMR of the crude reaction mixture.

Since we had carried out reductions using conditions which approximated to Scolastico's chelation (entries 3 and 5) and non-chelation (entries 2 and 4) conditions, we were somewhat surprised to find that hydroxy oxazolidine *syn*-19 was the major product from all of our reactions (see Table). With L-selectride[®] and sodium borohydride as the reducing agents (entries 2 and 4), *syn* selective reductions were expected via nucleophilic attack alongside the carbon–hydrogen bond in the Felkin³³ transition state 22 (*N*-tosyl group perpendicular to the carbonyl group³⁵). In contrast, when we carried out these reductions in the presence of magnesium bromide etherate and cerium (III) chloride (entries 3 and 5), we expected the reactions to be *anti* selective proceeding via nucleophilic attack on the less hindered face of the carbonyl group in the chelated intermediate 23 (M = Mg or Ce). Hoppe, ¹² Scolastico ¹³ and Agami ¹⁴ (*N*-Boc) have used such a model to explain the selectivity of Grignard reactions and reductions of other keto oxazolidines.

In fact, our reductions of keto oxazolidine 3 in the presence of chelating metals (Mg and Ce) were highly syn selective (entries 3 and 5). We suggest that the presence of the diphenylphosphinoyl group

interferes with the usual "internal" chelation of sulfonyl and ketone oxygens (e.g. 23) – instead, "external" chelation between the ketone and phosphinoyl oxygens³⁶ occurs and the *syn* selectivity can be rationalised by Felkin control³³ (*N*-tosyl group perpendicular to the carbonyl group; transition state 24) on an "externally" chelated intermediate.

Reagents: (i) NaIO₄ (2 eq), MeOH, rt, 2.5 h; 70%; (ii) Ph₂P(O)Me, BuLi, THF, -78 °C; 33%

Unfortunately, we were unable to find a good method for generating hydroxy oxazolidine anti-19 using our reduction strategy. However, by changing our approach, we were able to make hydroxy oxazolidine anti-19 selectively albeit in a low unoptimised yield: 1,2-diol cleavage of a mixture of 1,2-diols 15 with sodium periodate gave aldehyde 25 which could not be obtained completely pure. Then, reaction of aldehyde 25 with lithiated methyldiphenylphosphine oxide afforded a 33% yield of pure anti-19 after chromatography. The anti selectivity is rationalised by invoking the Felkin³³ transition state 26 (identical in all respects to transition state 22 except that the diphenylphosphinoylmethyl and hydride groups are added in the opposite order). Perhaps surprisingly, the corresponding known aminal aldehyde³⁷ failed to react with lithiated methyldiphenylphosphine oxide.

Reagents: (i) ethan-1,2-dithiol, BF3*Et2O, CH2Cl2, rt, 5 days; 53%; (ii) NaH, BnBr, THF, TBAI, rt, 16 h; 61%

Finally, to demonstrate the potential of this methodology for the synthesis of optically active β -hydroxy phosphine oxides, we have deprotected a 70:30 mixture of hydroxy oxazolidines *syn*- and *anti*-19 using ethan-1,2-dithiol and BF₃•Et₂O.^{20,38} A 53% yield of β -hydroxy phosphine oxide (S)-27 was obtained and its enantiomeric excess was confirmed as 40% by ¹H NMR spectroscopy in the presence of Pirkle's chiral shift reagent.³⁹ Subsequent protection generated benzyl ether (S)-28, a useful synthetic intermediate.

Summary

We have described the synthesis of six new diphenylphosphine oxide chiral auxiliaries (5-10). These types of compounds are nucleophilic (e.g. 5 and 6) or electrophilic (e.g. 7-10) in character; clearly, this allows maximum flexibility when designing subsequent stereoselective reactions. The synthetic potential of these chiral auxiliaries has been demonstrated by selectively synthesising both hydroxy oxazolidines syn- and anti-19, direct precursors of optically pure β -hydroxy phosphine oxides (S)- and (R)-27.

Experimental

General methods have been described previously.^{8b} The carbon atoms in the bicyclic aminal are referred to by numbers as depicted on aminal 5. The symbols + and - after the carbon NMR chemical shift indicate odd and even numbers of attached protons respectively. The enantiomeric excess of phosphine oxide (S)-27 was determined by measuring the integration of the 400 MHz ¹H NMR spectrum in the presence of

(R)-(-)-2,2-trifluoro-1-(9-anthryl)ethanol³⁹ as a chiral shift reagent^{8c} and is referrred to in the experimental section as "by Pirkle".

2-(2'-Diphenylphosphinoylethyl)-3-phenyl-1,3-diazabicyclo[3.3.0]octane 5

Aldehyde 11 (327 mg, 1.3 mmol) was added in one portion to a stirred suspension of diamine (*S*)-12 (267 mg, 1.5 mmol) and 3Å molecular sieves in toluene (10 cm^3) at room temperature and the resulting suspension was heated under reflux for 12 h. After cooling to room temperature, the mixture was filtered and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by chromatography on silica with CH₂Cl₂-MeOH (20:1) as eluent gave *phosphine oxide* 5 (350 mg, 65%) as pale yellow plates, m.p. 90-92 °C (from EtOAc); R_1 (10:1 CH₂Cl₂-MeOH) 0.5; v_{max} (CDCl₃)/cm⁻¹ 1599 (Ph), 1424 (P-Ph) and 1240 (P=O); δ H(200 MHz, CDCl₃) 7.88-7.70 (4 H, m, o-Ph₂PO), 7.54-7.38 (6 H, m, m- and p-Ph₂PO), 7.16 (2 H, dd, J 7.4 and 8.5, m-NPh). 6.65 (1 H, t, J 7.3, p-NPh), 6.46 (2 H, d, J 7.9, o-NPh), 4.49 (1 H, dd, J 2.75 and 9.4, H²), 3.80 (1 H, dtd, J 3.1, 7.5 and 10.4, H⁵), 3.38 (1 H, t, J 8.7, H⁴), 3.08 (1 H, ddd, J 4.4, 6.6 and 9.7, H⁸), 2.96 (1 H, dd, J 7.8 and 8.5, H⁴), 2.69-2.26 (2 H, m, PCH₂), 2.56 (1 H, q, J 5.1, H⁸), 2.20-2.00 (2 H, m, PCH₂CH₂) and 1.95-1.55 (4 H, m, CH₂CH₂); δ C(50 MHz, CDCl₃) 145.9- (ipso-NPh), 143.5-128.4 (Ph₂PO and m-NPh), 116.1+ (p-NPh), 112.3+ (o-NPh), 81.4+ (d, J 13.8, C²), 61.1+ (C⁵), 54.1- (C⁴ or C⁸), 52.1- (C⁴ or C⁸), 29.6- (C⁶ or C⁷), 25.8- (d, J 72.0, PCH₂), 25.3- (PCH₂CH₂) and 24.3- (C⁶ or C⁷); m/z 416 (10%, M+) and 187 (100, M - Ph₂POCH₂CH₂)(Found: M+, 416.2001. C₂6H₂9N₂OP requires M, 416.2018).

(2S,4S,5R)-2-Ethenyl-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine cis-14

Using reaction conditions described by Scolastico, ²⁰ a solution of N-tosyl norephedrine 13¹⁹ (312 mg, 1.0 mmol), acrolein diethyl acetal (170 µl, 1.1 mmol) and pyridinium p-toluenesulfonate (95 mg, 0.4 mmol) in benzene (10 cm³) was heated under reflux via a by-passed dropping funnel containing 4Å molecular sieves. After 2.5 h, the mixture was allowed to cool to room temperature and the solvent was evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with hexane-EtOAc (4:1) as eluent gave alkenyl oxazolidine cis-14 (290 mg, 83%) as a colourless oil, Rf(1:1 EtOAchexane) 0.6; $[\alpha]_D^{20}$ –17.6 (c 2.5 in CHCl₃); (Found: C, 66.3; H, 6.2; N, 4.25%; M⁺, 343.1248. C₁₉H₂₁NO₃S requires C, 66.4; H, 6.2; N, 4.1%; M, 343.1242); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1652 (C=C), 1598 (C₆H₄), 1495 (C₆H₄), 1351 (SO₂N) and 1169 (SO₂N); $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.82 (2 H, d, J 8.1, o-C₆H₄SO₂), 7.38 (2 H, d, J 8.0, m-C₆H₄SO₂), 7.32-7.17 (5 H, m, Ph), 6.03 (1 H, ddd, J 5.8, 10.3 and 16.6, CH=CH₂), 5.63 (1 H, d, J 17.1, CH=CH_AH_B), 5.47 (1 H, d, J 5.8, OCHN), 5.39 (1 H, d, J 10.3, CH=CH_AH_B), 4.41 (1 H, d, J 5.4, PhCHO), 4.12 (1 H, quin, J 6.6, CHN), 2.46 (3 H, s, C₆H₄Me) and 0.83 (3 H, d, J 6.8, CHMe); $\delta_{\rm C}(50~{\rm MHz,~CDCl_3})$ 144.2⁻ (ipso-C₆H₄SO₂), 136.1⁺ (CH=CH₂), 135.3⁻, 129.9⁺, 128.2⁺, 127.9⁺, 127.7⁺, 125.9⁺, 144.2⁻ $(CH=CH_2)$, 90.2+(OCHN), 81.3+(PhCHO), 58.3+(CHN), $21.5+(C_6H_4Me)$ and 17.1+(CHMe); m/z 343 $(20\%, M^+)$, 316 $(20, M - CH=CH_2)$, 91 $(40, C_6H_4Me)$ and 82 (100). The cis stereochemistry was confirmed by 500 MHz NOESY analysis. Diagnostic NOEs: NOE between $\delta_{\rm H}$ 5.47 (OCHN) and $\delta_{\rm H}$ 4.41 (PhCHO); NOE between $\delta_{\rm H}$ 4.41 (PhCHO) and $\delta_{\rm H}$ 4.12 (CHN).

(2S,4S,5R)-2-[(2'S)-1'-hydroxy-2'-hydroxyethyl]-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine syn-15 and (2S,4S,5R)-2-[(2'R)-1'-hydroxy-2'-hydroxyethyl]-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine anti-15

Osmium (III) chloride (20 mg, 0.07 mmol) was added to a stirred solution of alkenyl oxazolidine cis-14 (8.0 g, 23.3 mmol), potassium ferricyanide (24.5 g, 74.4 mmol), potassium carbonate (9.6 g, 69.6 mmol) and quinuclidine (185 mg, 1.7 mmol) in tert-butyl alcohol-water (1:1; 200 cm³) at room temperature. The resulting orange slurry was stirred vigorously at room temperature for 20 h and sodium sulfite (35 g) was added. After stirring at room temperature for 1 h, CH₂Cl₂ (100 cm³) was added and the layers separated. The aqueous layer was extracted with CH₂Cl₂ (3×100 cm³). The combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc-hexane (1:1) as eluent gave a 72:28 ratio (by ¹H NMR) of 1,2-diols syn- and anti-15 (7.75 g, 88%) as a foam which could not be crystallised, $R_f(1:1 \text{ EtOAc-hexane})$ 0.2; $[\alpha]_{D}^{2D}$ +18.6 (c 0.9 in CHCl₃); (Found: C, 60.1; H, 6.3; N, 3.5%; M⁺ + H, 378.1378. C₁₉H₂₃NO₅S requires C, 60.5; H, 6.1; N, 3.7%; M + H, 378.1375); $v_{\text{max}}(\text{CHCl}_3)/\text{cm}^{-1}$ 3692 (OH), 3668 (OH), 1598 (C₆H₄), 1495 (C_6H_4) , 1347 (SO_2N) and 1164 (SO_2N) ; $\delta_H(400 \text{ MHz}, CDCl_3)$ 7.84 $(2 \text{ H}, d, J.8.3, o-C_6H_4SO_2^{\text{syn}})$, 7.83 $(2 \text{ H}, d, J.8.3, o-C_6H_4SO_2^{\text{syn}})$, 7.83 $(2 \text{ H}, d, J.8.3, o-C_6H_4SO_2^{\text{syn}})$ d, J 8.5, o-C₆H₄SO₂anti), 7.42 (4 H, d, J 8.0, 2 × m-C₆H₄SO₂), 7.37-7.07 (10 H, m, 2 × Ph), 5.13 (1 H, d, J 3.5, OCHNanti), 5.06 (1 H, d, J 6.3, OCHNsyn), 4.24 (1 H, d, J 5.6, PhCHOanti), 4.18 (1 H, d, J 5.4, PhCHO^{syn}), 4.14-3.83 (8 H, m, 2 × CHN, 2 × CHOH and 2 × CH₂OH), 3.70 (1 H, br s, OH^{anti}), 2.92 (1 H, br s, OH^{syn}), 2.47 (6 H, s, $2 \times C_6H_4Me$), 0.87 (3 H, d, J 6.9, CHMe^{syn}) and 0.84 (3 H, d, J 6.8, CHMe^{anti}); $\delta_C(50)$ MHz, CDCl₃) 144.9⁻ (*ipso*-C₆H₄SO₂syn), 144.8⁻ (*ipso*-C₆H₄SO₂anti), 134.7⁻(anti), 134.6⁻(syn), 133.8⁻(anti), 133.6⁻(syn), 130.2-125.7⁺ (C₆H₄Me and Ph), 90.7⁺ (OCHN^{anti}), 90.6⁺ (OCHN^{syn}), 81.1⁺ (PhCHO^{anti}), 80.9+ (PhCHO^{syn}), 74.3+ (CHOH^{syn}), 73.35+ (CHOH^{anti}), 62.9- (CH₂OH^{anti}), 62.5- (CH₂OH^{syn}), 59.0+ (CHN^{syn}) , 58.5+ (CHN^{anti}) , 21.5+ $(2 \times C_6H_4Me)$, 17.1+ $(CHMe^{syn})$ and 17.0+ $(CHMe^{anti})$; m/z 378 (60%, $M^+ + H$), 316 (90, $M - CHOHCH_2OH$) and 91 (100, C_6H_4Me).

Conversion of 1,2-diols syn and anti-15 into the dithiane (S)-16

Boron trifluoride etherate (60 µl, 0.5 mmol) was added dropwise to a stirred solution of a 72:28 ratio of 1,2-diols *syn* and *anti*-15 (169 mg, 0.45 mmol) and propan-1,3-dithiol (250 µl, 2.5 mmol) in CH₂Cl₂ (7.5 cm³) under argon at room temperature. After 48 h, water (10 cm³) was added and the layers separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 10 cm³) and the combined organic extracts were washed with saturated sodium bicarbonate solution (10 cm³), dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc as eluent gave the dithiane (*S*)-16 (27 mg, 34%) as a colourless oil, R_f (EtOAc) 0.4; [α]_D²⁰ –2.6 (*c* 1.2 in MeOH)[lit.,²³ [α]_D²⁰ +6.0 (*c* 1.08 in MeOH) for the dithiane (*R*)-16]; ν_{max} (Nujol)/cm⁻¹ 3447 (OH); δ_{H} (200 MHz, CDCl₃) 4.05-3.77 (4 H, m, CH₂OH, CHOH and SCHS), 3.00-2.88 (2 H, m), 2.74-2.66 (2 H) and 2.08-1.99 (2 H, m, CH₂); δ_{C} (50 MHz, CDCl₃) 71.3+ (CHOH), 63.6- (CH₂OH), 47.3+ (SCHS), 27.45- (SCH₂), 26.9- (SCH₂) and 25.4- (CH₂); m/z 180 (100%, M+), 149 (30, M – CH₂OH) and 45 (90, CHCH₂OH)(Found: M+, 180.0280. C₆H₁₂O₂S₂ requires *M*, 180.0279).

Conversion of 1,2-diols syn- and anti-15 into cyclic sulfites 17

Triethylamine (90 μ l, 0.65 mmol) was added dropwise to a stirred solution of a 72:28 ratio of 1,2-diols synand anti-15 (118 mg, 0.3 mmol) and thionyl chloride (35 μ l, 0.5 mmol) in CH₂Cl₂ (5 cm³) under argon at 0

°C. The resulting solution was allowed to warm to room temperature over 1 h and then the solvent was evaporated under reduced pressure to give the crude product as a yellow oil. Purification by chromatography on silica with hexane-EtOAc (2:1) as eluent gave a 44:28:17:11 ratio (by 1 H NMR) of *cyclic sulfites* 17 (126 mg, 99%) as a foam which could not be crystallised, $R_{\rm f}(1:1$ EtOAc-hexane) 0.5; $v_{\rm max}({\rm CHCl_3})/{\rm cm^{-1}}$ 1598 (C₆H₄), 1496 (C₆H₄), 1356 (SO₂N), 1168 (SO₂N) and 1070 (SO); Diagnostic signals for the four diastereomers: $\delta_{\rm H}(400~{\rm MHz},{\rm CDCl_3})$ 5.45 (1 H, d, J 2.8, OCHNsyn,minor), 5.37 (1 H, d, J 4.2, OCHNanti,minor), 5.19 (1 H, d, J 2.8, OCHNsyn,major), 5.16 (1 H, d, J 3.4, OCHNanti,major), 4.43 (1 H, d, J 5.8, PhCHOsyn,minor), 4.39 (1 H, d, J 5.9, PhCHOsyn,major), 4.35 (1 H, d, J 5.6, PhCHOanti,major) and 4.27 (1 H, d, J 5.5, PhCHOanti,minor); $\delta_{\rm C}(100~{\rm MHz},{\rm CDCl_3})$ 89.1+ (OCHNanti), 88.4+ (OCHNsyn), 88.0+ (OCHNanti), 87.5+ (OCHNsyn), 68.1- (CH₂OSOsyn,minor), 67.8- (CH₂OSOanti,minor), 67.0- (CH₂OSOsyn,major), 66.8- (CH₂OSOanti,major), 17.6+ (CHMesyn), 17.5+ (CHMesyn), 16.9+ (CHMeanti) and 16.8+ (CHMeanti); m/z 424 (40%, M+ + H), 423 (10, M+), 316 (80, M - CHOSO₂CH₂) and 91 (100, C₆H₄Me)(Found: M+, 423.0789). C₁₉H₂₁NO₆S₂ requires M, 423.0810).

Conversion of cyclic sulfites 17 into cyclic sulfates syn- and anti-18

Sodium periodate (207 mg, 1.0 mmol) and ruthenium (III) chloride trihydrate (3 mg, 0.01 mmol) were added in one portion to a stirred solution of cyclic sulfites 17 (340 mg, 0.8 mmol) in carbon tetrachloride-wateracetonitrile (1:1:1; 9 cm³) at room temperature. After 12 h at room temperature, water (10 cm³) and CH₂Cl₂ $(10~\text{cm}^3)$ were added and the layers separated. The aqueous layer was extracted with CH₂Cl₂ $(3 \times 20~\text{cm}^3)$ and the combined organic extracts were dried (Na2SO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by chromatography on silica with EtOAc-hexane (1:1) as eluent gave a 72:28 ratio (by ¹H NMR) of cyclic sulfates syn- and anti-18 (358 mg, 100%) as a foam which could not be crystallised, $R_1(1:1 \text{ EtOAc-hexane})$ 0.5 for syn-18 and 0.4 for anti-18; $[\alpha]_D^{2D}$ -10.3 (c 0.9 in CHCl₃); (Found: C, 51.8; H, 4.85; N, 3.0%; M⁺, 439.0738. C₁₉H₂₁NO₇S₂ requires C, 51.9; H, 4.8; N, 3.2%; M. 439.0760); $v_{\text{max}}(\text{CHCl}_3)/\text{cm}^{-1}$ 1598 (C₆H₄), 1495 (C₆H₄), 1356 (SO₂N), 1174 (SO₂N) and 1128 (SO₂); $\delta_{\rm H}(400~{\rm MHz},{\rm CDCl_3})$ 7.83 (2 H, d, J 8.2, o-C₆H₄SO₂syn), 7.82 (2 H, d, J 8.0, o-C₆H₄SO₂anti), 7.44 (2 H, d, J 8.1, m-C₆H₄SO₂^{syn}), 7.43 (2 H, d, J 7.7, m-C₆H₄SO₂^{anti}), 7.34-7.12 (10 H, m, $2 \times Ph$), 5.43 (1 H, ddd, J 2.3, 6.15 and 7.1, CHOSO₂syn), 5.35 (1 H, d, J 2.3, OCHNsyn), 5.30 (1 H, d, J 3.45, OCHNanti), 5.23 (1 H, dt, J 3.4 and 6.2, CHOSO₂anti), 5.04 (1 H. dd, J 5.8 and 9.2, SO₂OCH_AH_Bsyn), 4.97 (1 H. dd, J 6.0 and 9.2, SO₂OCH_AH_B^{anti}), 4.86 (1 H, dd, J 6.8 and 9.1, SO₂OCH_AH_B^{syn}; 1 H, "underneath", SO₂OCH_AH_B^{anti}), 4.47 (1 H, d, J 5.9, PhCHO^{syn}), 4.38 (1 H, d, J 5.6, PhCHO^{anti}), 4.03 (2 H, quin, J 6.7, 2 × CHN), 2.49 (6 H, s, 2 × C_6H_4Me), 0.83 (3 H, d, J 6.9, CHMe^{syn}) and 0.82 (3 H, d, J 6.8, CHMe^{anti}); δ_C (50 MHz, CDCl₃) 145.5 (ipso-C₆H₄SO₂syn), 145.3⁻ (ipso-C₆H₄SO₂anti), 133.9-125.6 (C₆H₄Me and Ph), 87.8⁺ (OCHNanti), 87.2⁺ (OCHNsyn), 82.4+ (CHOSO₂anti), 81.7+ (CHOSO₂syn), 80.9+ (PhCHOanti), 80.3+ (PhCHOsyn), 68.6- $(SO_2OCH_2^{anti})$, 67.5- $(SO_2OCH_2^{syn})$, 58.8+ (CHN^{syn}) , 58.6+ (CHN^{anti}) , 23.2+ $(2 \times C_6H_4Me)$, 17.4+ $(CHMe^{syn})$ and 16.4^+ $(CHMe^{anti})$; m/z 440 (10%, M⁺ + H), 439 (5, M⁺), 316 (70, M – CHOSO₂OCH₂) and 91 (100, C₆H₄Me).

Reaction of lithium diphenylphosphide with cyclic sulfates 18

n-Butyllithium (3.8 cm 3 of a 1.5 M solution in hexane, 5.7 mmol) was added dropwise to a stirred solution of diphenylphosphine (1.0 cm 3 , 5.75 mmol) in THF (60 cm 3) under argon at -30 °C. The resulting orange solution was stirred at this temperature for 4 h and then a solution of a 72:28 ratio of cyclic sulfates *syn*- and

anti-18 (2.03 g, 4.6 mmol) in THF (20 cm³) was added dropwise and the resulting yellow solution was allowed to warm to room temperature over 1.5 h. Water (5 cm³) was then added dropwise followed by the addition of concentrated sulfuric acid (0.5 cm³). The resulting colourless solution was stirred at room temperature for 12 h. Hydrogen peroxide (100 vol, 5 cm³) was added and the solution stirred for a further 30 min. The THF was evaporated under reduced pressure and the residue dissolved in CH_2Cl_2 -water (1:1; 30 cm³). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 30cm³). The combined arganic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc as eluent gave a 70:30 ratio of alcohols syn- and anti-19 (2.13 g, 82%) as a foam which could not be crystallised.

(2S,4S,5R)-2-(1'-Diphenylphosphinovlethyl-2'-keto)-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine 8 A solution of a 72:28 ratio of alcohols syn- and anti-19 (679 mg, 1.2 mmol) in CH₂Cl₂ (5 cm³) was added dropwise by means of a canula to a stirred solution of Dess-Martin periodinane (974 mg, 2.6 mmol) in CH₂Cl₂ (10 cm³) under argon at 0 °C. The resulting solution was allowed to warm to room temperature and stirred for 12 h. Then, the mixture was carefully poured into a solution of sodium thiosulfate (20 mmol) in saturated sodium bicarbonate (20 cm³). After 30 min, the layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 20 cm³). The combined organic extracts were washed with saturated sodium bicarbonate (20 cm³) and saturated brine (20 cm³), dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product. Purification by chromatography on silica with EtOAc as eluent gave the ketone 8 (373 mg, 55%) as a foam which could not be crystallised, $R_f(EtOAc)$ 0.5; $[\alpha]_{-0.0}^{20}$ -63.5 (c 1.4 in CHCl₃); (Found: M^+ – TsH, 403.1345. $C_{31}H_{30}NO_5PS$ requires M – TsH, 403.1337); $v_{max}(CHCl_3)/cm^{-1}$ 1734 (C=O), 1598 (Ph and C_6H_4), 1495 (C_6H_4), 1438 (P-Ph), 1355 (SO₂N), 1213 (P=O) and 1167 (SO₂N); $\delta_H(200 \text{ MHz})$, CDCl₃) 7.97-7.72 (4 H, m, o-Ph₂PO), 7.87 (2 H, d, J 8.0, o-C₆H₄SO₂), 7.58-7.44 (6 H, m, m- and p-Ph₂PO), 7.37 (2 H, d, J 8.1, m-C₆H₄SO₂), 7.25-7.10 (5 H, m, Ph), 5.72 (1 H, s, OCHN), 4.46 (1 H, dd, J 14.0 and 15.6, PCH_AH_B), 4.25 (1 H, d, J 5.7, PhCHO), 4.13 (1 H, quin, J 7.1, CHN), 3.76 (1 H, t, J 13.3, PCH_AH_B), 2.40 (3 H, s, C₆H₄Me) and 0.69 (3 H, d, J 6.85, CHMe); $\delta_{\rm C}(50~{\rm MHz},{\rm CDCl_3})~196.4^-$ (d, J 6.0, C=O), 144.9^- (ipso- $C_6H_4SO_2$), 134.8-125.9 (Ph₂PO, C_6H_4Me and Ph), 89.8+ (OCHN), 82.5+ (PhCHO), 58.6+ (CHN), 41.4- (d, J 58.6, PCH₂), 21.5+ (C₆H₄Me) and 16.3+ (CHMe); m/z 403 (40%, M+ - TsH), 201 (100, Ph₂PO), 91 (50, $C_6H_4Me)$ and 77 (40, Ph).

(2S,4S,5R)-2-Diphenylphosphinoylethenyl-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine 10 n-Butyllithium (70 μ l of a 1.5 M solution in hexane, 0.1 mmol) was added dropwise to a stirred solution of a 72:28 ratio of alcohols *syn*- and *anti*-19 (59 mg, 0.1 mmol) in THF (4 cm³) under argon at 0 °C. The resulting red solution was stirred at 0 °C for 10 min and then methanesulfonyl chloride (10 μ l, 0.1 mmol) was added dropwise. After 1 h at 0 °C, n-butyllithium (80 μ l of a 1.5 M solution in hexane, 0.1 mmol) was added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for 2 h. Saturated ammonium chloride (1 cm³) was added, the THF evaporated under reduced pressure and the residue dissolved in CH₂Cl₂-water (1:1; 10 cm³). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 cm³). The combined arganic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by chromatography on silica with EtOAc as eluent gave *vinyl phosphine oxide* 10 (31 mg, 52%) as an oil, R_f (EtOAc) 0.5; v_{max} (CHCl₃)/cm⁻¹ 1598 (Ph and C₆H₄), 1438 (P-Ph), 1354 (SO₂N), 1237 (P=O) and 1167 (SO₂N); δ_{H} (200 MHz, CDCl₃) 7.80-

7.70 (6 H, m, o-Ph₂PO and o-C₆H₄SO₂), 7.55-7.46 (6 H, m, m- and p-Ph₂PO), 7.36-7.10 (7 H, m, Ph and m-C₆H₄SO₂), 6.89 (1 H, d, J 22.6, PCH), 6.89 (1 H, dd, J 1.0 and 19.0, PCH=CH), 5.71 (1 H, dd, J 1.6 and 3.9, OCHN), 4.41 (1 H, d, J 5.3, PhCHO), 4.14-4.06 (1 H, m, J 6.7, CHN), 2.44 (3 H, s, C₆H₄Me) and 0.75 (3 H, d, J 6.8, CHMe); δ C(100 MHz, CDCl₃) 146.7+ (d, J 2.6, PCH=CH), 144.6- (ipso-C₆H₄SO₂), 135.2-125.9 (Ph₂PO, C₆H₄Me and Ph), 126.65+ (d, J 121.0, PCH), 92.7+ (d, J 14.2, OCHN), 81.8+ (PhCHO), 58.5+ (CHN), 21.7+ (C₆H₄Me) and 17.0+ (CHMe); m/z 543 (40%, M+), 426 (100), 201 (50, Ph₂PO), 91 (100, C₆H₄Me) and 77 (40, Ph)(Found: M+, 543.1661. C₃₁H₃₀NO₄PS requires M, 543.1633).

(2S,4S,5R)-2-Diphenylphosphinoylethenyl-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine 6

L-Selectride® (0.05 cm³ of a 1.0 M solution in hexane, 0.05 mmol) was added dropwise to a stirred solution of the vinyl phosphine oxide **10** (31 mg, 0.05 mmol) in THF (2 cm³) under argon at –78 °C. After 2 h at –78 °C, the solution was allowed to warm to room temperature and water (1.0 cm³) was added. The THF was evaporated under reduced pressure and the residue dissolved in CH₂Cl₂-water (1:1; 20 cm³). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ ($3 \times 10 \text{ cm}^3$). The combined organic extracts were washed with 3 M hydrochloric acid ($3 \times 10 \text{ cm}^3$), dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc as eluent gave *phosphine oxide* **6** (30 mg, 93%) as an oil, $R_f(\text{EtOAc}) 0.35$; $v_{\text{max}}(\text{CHCl}_3)/\text{cm}^{-1} 1598$ (Ph and C₆H₄), 1496 (Ph and C₆H₄), 1438 (P–Ph), 1350 (SO₂N), 1246 (P=O) and 1165 (SO₂N); $\delta_H(400 \text{ MHz}, \text{CDCl}_3) 7.83$ -7.75 (6 H, m, o-Ph₂PO and o-C₆H₄SO₂), 7.54-7.47 (6 H, m, o-and o-Ph₂PO), 7.35 (2 H, d, o-18.15, o-C₆H₄SO₂), 7.30-7.23 (3 H, m, Ph), 7.09-7.05 (2 H, m, Ph), 5.14 (1 H, dd, o-18.15, o-19.16, PhCHO), 4.01-3.94 (1 H, m, o-19.16, CHN), 2.65-2.20 (4 H, m, PCH₂CH₂), 2.44 (3 H, s, C₆H₄Me) and 0.77 (3 H, d, o-16.8, CHMe); $\delta_C(100 \text{ MHz}, \text{CDCl}_3) 144.4$ (o-19.50-C₆H₄SO₂), 135.1-125.8 (Ph₂PO, C₆H₄Me) and Ph), 90.4+ (d, o-16.8, OCHN), 80.9+ (PhCHO), 58.5+ (CHN), 28.6- (PCH₂CH₂), 24.2- (d, o-173.15, PCH₂), 21.7+ (C₆H₄Me) and 17.6+ (CHMe).

(2S,4S,5R)-2-Methoxycarbonyl-4-methyl-5-phenyl-3-tert-butoxycarbonyloxazolidine cis-21

A solution of (-)-norephedrine (1.0 g, 6.6 mmol) and methyl glyoxylate³⁰ (729 mg, 8.3 mmol) in toluene (25 cm³) was heated under reflux with continuous removal of water by means of a Dean-Stark head. After 1 h, the mixture was allowed to cool to room temperature and the toluene was evaporated under reduced pressure to give a 50:50 ratio (by ¹H NMR) of oxazolidines cis- and trans-20 (1.45 g, 100%) as a yellow oil which was dissolved in EtOAc (25 cm³) and heated to 50 °C. Then, a solution of di-tert-butyl dicarbonate (1.47 g, 7.9 mmol) in EtOAc (25 cm³) was added dropwise over a period of 3 h. Water (10 cm³) was added, the layers separated and the aqueous layer extracted with EtOAc $(3 \times 20 \text{ cm}^3)$. The combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by chromatography on silica with EtOAc-hexane (1:1) as eluent gave oxazolidine cis-21 (1.7 g, 81%) as a colourless oil, $R_f(\text{EtOAc})$ 0.6; $[\alpha]_D^{2D}$ -68.3 (c 1.1 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1758 (C=O, CO₂Me), 1713 (C=O, NCO₂^tBu), 1607 (Ph) and 1498 (Ph); $\delta_{\rm H}(200~{\rm MHz},{\rm CDCl}_3)$ 7.39-7.26 (5 H, m, Ph), 5.42 (1 H, br s, OCHN), 5.24 (1 H, d, J 5.6, PhCHO), 4.26 (1 H, br m, CHN), 3.86 (3 H, s, MeO), 1.46 (9 H, br s, CMe₃) and 0.91 (3 H, d, J 6.6, CHMe); $\delta_{C}(50 \text{ MHz}, \text{CDCl}_{3})$ 168.9 $^{-}$ (C=O), 135.4 $^{-}$ (ipso-Ph), 128.2 $^{+}$, 128.0 $^{+}$, 126.1 $^{+}$, 85.0^{+} (OCHN), 83.2^{+} (PhCHO), 81.0^{-} (OCMe₃), 55.3^{+} (CHN), 52.6^{+} (MeO), 28.3^{+} (OCMe₃) and 14.7^{+} (CHMe); m/z 321 (5%, M⁺), 320 (10, M - H), 262 (60, M - CO₂Me), 206 (80, M - CO₂'Bu) and 57 (100, CMe₃)(Found: M^+ , 321.1581. $C_{17}H_{23}NO_5$ requires M, 321.1576).

(2S,4S,5R)-2-(1'-Diphenylphosphinoylethyl-2'-keto)-4-methyl-5-phenyl-3-tert-butoxycarbonyloxazolidine 9

n-Butyllithium (2.2 cm³ of a 1.6 M solution in hexane, 3.5 mmol) was added dropwise to a stirred solution of methyldiphenylphosphine oxide (751 mg, 3.5 mmol) in THF (15 cm³) under argon at -78 °C. After 30 min at -78 °C, a solution of methyl ester 21 (868 mg, 2.7 mmol) in THF (10 cm³) was added dropwise and the resulting solution was stirred at -78 °C for 1 h. Saturated ammonium chloride (1 cm³) was added and the mixture allowed to warm to room temperature. The THF was evaporated under reduced pressure and the residue dissolved in CH₂Cl₂-water (1:1; 20 cm³). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 cm³). The combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by chromatography on silica with EtOAc as eluent gave ketone 9 (699 mg, 51%) as plates, m.p. 167-169 °C (from EtOAc); R_f(EtOAc) 0.5; $[\alpha]_{D}^{20}$ -48.1 (c 0.24 in CHCl₃); (Found: C, 69.1; H, 6.4; N, 2.7; P, 6.2%; M⁺, 505.2025. C₂₉H₃₂NO₅P requires C, 68.9; H, 6.4; N, 2.8; P, 6.1%; M, 505.2018); $v_{\text{max}}(\text{Nujol})/\text{cm}^{-1}$ 1740 (C=O, CO₂Me), 1707 (C=O, NCO₂'Bu), 1459 (P–Ph) and 1186 (P=O); δ_H(200 MHz, CDCl₃) 7.89-7.76 (4 H, m, o-Ph₂PO), 7.56-7.45 (6 H, m, m- and p-Ph₂PO), 7.34-7.17 (5 H, m, Ph), 5.52 (1 H, s, OCHN), 5.20 (1 H, d, J 5.7, PhCHO), 4.4-3.6 (3 H, br m, PCH_AH_B, PCH_AH_B and CHN), 1.35 (9 H, br s, CMe₃) and 0.75 (3 H, d, J 6.7, CHMe); δ_C (50 MHz, CDCl₃) 135.3-125.9 (Ph₂PO and Ph), 89.0⁺ (OCHN), 82.7⁺ (PhCHO), 81.2⁻ (OCMe₃), 55.4⁺ (CHN), 41.8⁻ (d, J 61.8, PCH₂), 28.1⁺ (OCMe₃) and 15.1⁺ (CHMe); m/z 505 (10%, M⁺), 432 (40, M – OCMe₃), 262 (60, M – Ph₂POCH₂CO), 215 (80, Ph₂POCH₂), 206 (100) and 57 (60, CMe₃).

Luche reduction of ketone 8: (2S,4S,5R)-2-[(2'S)-1'-Diphenylphosphinoylethyl-2'-hydroxy]-4-methyl-5-phenyl-3-p-toluenesulfonyl-oxazolidine syn-19

Sodium borohydride (47 mg, 1.2 mmol) was added in one portion to a stirred solution of ketone 8 (500 mg, 0.9 mmol) and CeCl₃•7H₂O (580 mg, 1.6 mmol) in EtOH (10 cm³) under argon at -78 °C. After 2 h at -78 °C, water (5 cm³) was added and the reaction mixture was extracted with CH_2Cl_2 (3 × 40 cm³). The combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give a 95:5 ratio (by ¹H NMR) of alcohols syn- and anti-19 (500 mg, 100%) as an oil. Purification by chromatography on silica with EtOAc as eluent gave alcohol syn-19 (300 mg, 60%) as a foam which could not be crystallised, $R_f(EtOAc)$ 0.4; $[\alpha]_D^{20}$ -1.4 (c 0.5 in CHCl₃); (Found: C, 65.7; H, 5.7; N, 2.25; P, 5.6%; M⁺ - Ts, 406.1570. $C_{31}H_{32}NO_5PS$ requires C, 66.3; H, 5.75; N, 2.5; P, 5.5%; M-Ts, 406.1572); $v_{max}(CHCl_3)/cm^{-1}$ 3373 (OH), 1598 (Ph and C₆H₄), 1495 (Ph and C₆H₄), 1438 (P–Ph), 1353 (SO₂N), 1166 (SO₂N) and 1122 (P=O); δ_H (400) MHz, CDCl₃) 7.87-7.73 (4 H, m, o-Ph₂PO), 7.79 (2 H, d, J 8.3, o-C₆H₄SO₂), 7.56-7.48 (6 H, m, m- and p-Ph₂PO), 7.36 (2 H, d, J 8.0, m-C₆H₄SO₂), 7.27-7.24 (3 H, m, Ph), 7.10-7.09 (2 H, m, Ph), 5.07 (1 H, d, J 3.6, OCHN), 4.60 (1 H, br s, OH), 4.55 (1 H, ddt, J 1.8, 3.5 and 9.8, CHOH), 4.26 (1 H, d, J 5.7, PhCHO), 4.02 (1 H. quin, J 6.7, CHN), 2.84 (1 H, ddd, J 1.8, 9.0 and 14.85, PCH_AH_B), 2.70 (1 H, td, J 11.5 and 14.85, PCH_AH_B), 2.44 (3 H, s, $C_6H_4M_e$) and 0.83 (3 H, d, J 6.8, $C_6H_4M_e$); $C_6H_4M_e$); $C_6H_4M_e$ 0 and 0.83 (3 H, d, J 6.8, $C_6H_4M_e$ 1); $C_6H_4M_e$ 1 (ipsoportion) C₆H₄SO₂), 134.9-125.9 (Ph₂PO, C₆H₄Me and Ph), 91.9+ (d, J 15.2, OCHN), 81.0+ (PhCHO), 69.2+ (CHOH), 58.9+ (CHN), 30.3- (d, J 72.7, PCH₂), 21.6+ (C₆H₄Me) and 17.5+ (CHMe); m/z 406 (10%, M+-Ts), 316 (40, M – Ph₂P(O)CH₂CHOH), 201 (70, Ph₂PO), 91 (100, C₆H₄Me) and 77 (50, Ph).

(2S,4S,5R)-2-Formyl-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine 25

Sodium periodate (136 mg, 0.6 mmol) was added in one portion to a stirred solution of a 72:28 ratio of 1,2-diols *syn*- and *anti*-15 (120 mg, 0.3 mmol) in MeOH (5 cm³) at room temperature. After 2.5 h at room temperature, water (10 cm³) and EtOAc (10 cm³) were added and the layers separated. The aqueous layer was extracted with EtOAc (3 × 20 cm³) and the combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc-hexane (1:1) as eluent gave impure *aldehyde* 25 (77 mg, 70%) as a colourless oil, R_f (1:1 EtOAc-hexane) 0.4; δ_H (200 MHz, CDCl₃) 9.55 (1 H, d, J 2.85, CHO), 7.84 (2 H, d, J 8.3, o-C₆H₄SO₂), 7.42 (2 H, d, J 8.1, m-C₆H₄SO₂), 7.36-7.17 (5 H, m, Ph), 5.19 (1 H, d, J 2.9, OCHN), 4.50 (1 H, d, J 5.6, PhCHO), 4.20-4.00 (1 H, m, CHN), 2.47 (3 H, s, C₆H₄Me) and 0.83 (3 H, d, J 6.8, CHMe).

(2S,4S,5R)-2-[(2'R)-1'-Diphenylphosphinoylethyl-2'-hydroxy]-4-methyl-5-phenyl-3-p-toluenesulfonyloxazolidine *anti*-19

n-Butyllithium (0.12 cm³ of a 1.5 M solution in hexane, 0.2 mmol) was added dropwise to a stirred solution of methyldiphenylphosphine oxide (38 mg, 0.2 mmol) in THF (2.5 cm³) under argon at -78 °C. After 30 min at -78 °C, a solution of the impure aldehyde 25 (77 mg, 0.2 mmol) in THF (2 cm³) was added dropwise and the resulting solution was stirred at -78 °C for 1 h. Saturated ammonium chloride (0.5 cm³) was added and the mixture allowed to warm to room temperature. The THF was evaporated under reduced pressure and the residue dissolved in CH₂Cl₂-water (1:1; 10 cm³). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 cm³). The combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc as eluent gave alcohol anti-19 (33 mg, 33%) as a foam which could not be crystallised, R_f(EtOAc) 0.45; $[\alpha]_D^{20}$ +0.8 (c 0.4 in CHCl₃); v_{max} (CHCl₃)/cm⁻¹ 3373 (OH), 1598 (Ph and C₆H₄), 1495 (Ph and C₆H₄), 1438 (P–Ph), 1353 (SO₂N), 1166 (SO₂N) and 1122 (P=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.83-7.77 (6 H, m, o-Ph₂PO and o-C₆H₄SO₂), 7.55-7.44 (6 H, m, m- and p-Ph₂PO), 7.38 (2 H, d, J 8.1, m-C₆H₄SO₂), 7.26-7.20 (3 H, m, Ph), 7.10-7.08 (2 H, m, Ph), 5.18 (1 H, d, J 4.5, OCHN), 4.32 (1 H, ddd, J 3.1, 5.6 and 9.8, CHOH), 4.15 (1 H, d, J 5.6, PhCHO), 4.02 (1 H, quin, J 6.7, CHN), 2.86 (1 H, ddd, J 3.5, 10.2 and 15.0, PCHAHB), 2.77 (1 H, td, J 9.9 and 15.3, PCH_AH_B), 2.44 (3 H, s, C₆H₄Me) and 0.70 (3 H, d, J 6.85, CHMe); $\delta_{\rm C}(100 \, {\rm MHz}, {\rm CDCl}_3)$ 144.8⁻ (*ipso*-C₆H₄SO₂), 135.2-126.0 (Ph₂PO, C₆H₄Me and Ph), 92.7⁺ (d, *J* 13.7, OCHN), 81.2⁺ (PhCHO), 69.3+ (CHOH), 58.8+ (CHN), 32.7- (d, J 71.9, PCH₂), 21.7+ (C₆H₄Me) and 17.1+ (CHMe); m/z 406 (10%, $M^+ - Ts$), 316 (40, $M - Ph_2P(O)CH_2CHOH$), 201 (70, Ph_2PO), 91 (100, C_6H_4Me) and 77 (50, Ph)(Found: M^+ - Ts, 406.1570. $C_{31}H_{32}NO_5PS$ requires M - Ts, 406.1572).

Conversion of hydroxy oxazolidines syn- and anti-19 into the dithiolane (S)-27

Boron trifluoride etherate (6 μ l, 0.05 mmol) was added dropwise to a stirred solution of a 72:28 ratio of 1,2-diols syn and anti-15 (30 mg, 0.05 mmol) and ethan-1,3-dithiol (30 μ l, 0.3 mmol) in CH₂Cl₂ (2 cm³) under argon at room temperature. After 48 h, water (5 cm³) was added and the layers separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 5 cm³) and the combined organic extracts were washed with saturated sodium bicarbonate solution (5 cm³), dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc-hexane (1:1) and then EtOAc as eluent gave the dithiolane (S)-27 (10 mg, 53%) as a foam which could not be crystallised, R_f (EtOAc) 0.3; $[\alpha]_D^{20}$ –23.2 (c 1.0 in CHCl₃; 40% ee by Pirkle); v_{max} (Nujol)/cm⁻¹ 3364 (OH), 1593 (Ph), 1438 (P–Ph) and 1171 (P=O);

 $\delta_{\rm H}(200~{\rm MHz},{\rm CDCl_3})$ 7.84-7.67 (4 H, m, o-Ph₂PO), 7.58-7.37 (6 H, m- and p-Ph₂PO), 4.65 (1 H, br s, OH), 4.58 (1 H, d, J 6.4, SCHS), 4.14-3.99 (1 H, m, CHOH), 3.17 (4 H, br s, CH₂CH₂), 2.75 (1 H, ddd, J 2.3, 9.1 and 14.7, PCH_AH_B) and 2.58 (1 H, ddd, J 10.0, 11.5 and 14.7, PCH_AH_B); $\delta_{\rm C}(50~{\rm MHz},{\rm CDCl_3})$ 132.1-128.6 (Ph₂PO), 71.5+ (d, J 3.1, CHOH), 59.4+ (d, J 15.2, SCHS), 38.6- (SCH₂), 38.4- (SCH₂) and 33.7- (d, J 70.45, PCH₂); m/z 332 (60%, M+ - H₂O), 245 (100, Ph₂P(O)CH₂CHOH), 201 (90, Ph₂PO) and 77 (20, Ph)(Found: M+ - H₂O, 332.0462. C₁₇H₁₉O₂PS₂ requires M - H₂O, 332.0458).

Conversion of the dithiolane (S)-27 into benzyl ether (S)-28

The dithiolane (*S*)-27 (20 mg, 0.06 mmol) was added in one portion to a stirred suspension of sodium hydride (2.5 mg of a 60 wt% dispersion in mineral oil, 0.06 mmol) and tetra-n-butylammonium iodide (1 mg, 0.02 mmol) in THF (2 cm³) under argon at room temperature. After 5 min, benzyl bromide (10 μ l, 0.1 mmol) was added dropwise and the resulting suspension stirred at room temperature for 16 h. Water (5 cm³) was added and the reaction mixture was extracted with CH₂Cl₂ (3 × 20 cm³). The combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as an oil. Purification by chromatography on silica with EtOAc as eluent gave *benzyl ether* (*S*)-28 (16 mg, 61%) as a colourless oil, R_f (EtOAc) 0.5; $[\alpha]_D^{20} - 7.8$ (c 1.6 in CHCl₃; 40% ee); v_{max} (Nujol)/cm⁻¹ 1593 (Ph), 1438 (P-Ph) and 1171 (P=O); δ_H (200 MHz, CDCl₃) 7.85-7.67 (4 H, m, o-Ph₂PO), 7.50-7.37 (6 H, m- and p-Ph₂PO), 7.19-7.16 (3 H, m, Ph), 6.98-6.93 (2 H, m, Ph), 4.78 (1 H, d, J 5.4, SCHS), 4.64 (1 H, d, J 10.6 PhCH_AH_BO), 4.44 (1 H, d, J 10.6, PhCH_AH_BO), 4.24-4.10 (1 H, m, CHOBn), 3.29-3.10 (4 H, m, CH₂CH₂) and 2.94-2.68 (2 H, m, PCH₂); δ_C (50 MHz, CDCl₃) 137.7- (*ipso*-Ph), 131.6-127.4 (Ph₂PO and Ph), 78.2+ (d, J 2.9, CHOBn), 73.5- (PhCH₂O), 57.9+ (d, J 12.4, SCHS), 38.7- (SCH₂), 38.6- (SCH₂) and 33.7- (d, J 72.2, PCH₂); m/z 335 (50%, M+ - CH(SCH₂)₂), 201 (50, Ph₂PO) and 91 (100, PhCH₂)(Found: M+ - CH(SCH₂)₂, 335.1220. C₂4H₂₅O₂PS₂ requires M - CH(SCH₂)₂, 335.1201).

Acknowledgements: We thank EPSRC for a grant (to P. O'B.).

References and Notes

- 1. Clayden, J.; Collington, E. W.; Warren, S. Tetrahedron Lett., 1993, 34, 1327-1330.
- 2. Harmat, N. J. S.; Warren, S. Tetrahedron Lett., 1990, 31, 2743-2746.
- 3. Clayden, J.; McElroy, A. B.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1995, 1913-1934.
- 4. Clayden, J.; Collington, E. W.; Lamont, R. B.; Warren, S. Tetrahedron Lett., 1993, 34, 2203-2206.
- 5. Nelson, A.; Warren, S. Tetrahedron Lett., 1996, 37, 1501-1504.
- 6. Clayden, J.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1994, 2811-2823.
- 7. Nelson, A.; O'Brien, P.; Warren, S. Tetrahedron Lett., 1995, 36, 2685-2688.
- (a) O'Brien, P.; Warren, S. Tetrahedron Lett., 1995, 36, 2681-2684; (b) O'Brien, P.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1996, 2117-2127; (c) O'Brien, P.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1996, 2129-2138.
- 9. (a) Warren, S.; Wyatt, P. *Tetrahedron: Asymmetry*, **1996**, 7, 989-992; (b) Warren, S.; Wyatt, P. McPartlin, M.; Woodroffe, T. *Tetrahedron Lett.*, **1996**, 37, 5609-5612.
- 10. Clayden, J.; Warren, S. Angew. Chem., Int. Ed. Engl., 1996, 35, 241-270.
- 11. Mukaiyama, T. Tetrahedron, 1981, 37, 4111-4119.
- (a) Frieboes, K. C.; Harder, T.; Aulbert, D.; Strahringer, C.; Bolte, M.; Hoppe, D. Synlett, 1993, 921-923;
 (b) Harder, T.; Löhl, T.; Bolte, M.; Wagner, K.; Hoppe, D. Tetrahedron Lett., 1994, 35, 7365-7368.

- 13. (a) Manzoni, L.; Pilati, T.; Poli, G.; Scolastico, C. J. Chem. Soc., Chem. Commun., 1992, 1027-1029; (b) Poli, G.; Maccagni, E.; Manzoni, L.; Pilati, T.; Scolastico, C. Synlett, 1995, 71-73.
- 14. (a) Agami, C.; Couty, F.; Lequesne, C. *Tetrahedron Lett.*, **1994**, *35*, 3309-3312; (b) Agami, C.; Couty, F.; Lequesne, C. *Tetrahedron*, **1995**, *51*, 4043-4056.
- 15. (a) Colombo, L.; Di Giacomo, M.; Brusotti, G.; Delogu, G. *Tetrahedon Lett.*, **1994**, *35*, 2063-2066; (b) Colombo, L.; Di Giacomo, M.; Brusotti, G.; Milano, E. *Tetrahedon Lett.*, **1995**, *36*, 2863-2866.
- 16. Preliminary communication: O'Brien, P.; Warren, S. Tetrahedron Lett., 1996, 37, 3051-3054.
- 17. Dess, D. B.; Martin, C. J. J. Am. Chem. Soc., 1991, 113, 7277-7287.
- 18. Wallace, P.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1988, 2971-2978.
- 19. Hoppe, I.; Hoffmann, H.; Gärtner, I.; Kretteck, T.; Hoppe, D. Synthesis, 1991, 1157-1162.
- 20. For the experimental procedure used, see: Bernardi, A.; Cardani, S.; Pilati, T.; Poli, G.; Scolastico, C.; Villa, R. J. Org. Chem., 1988, 53, 1600-1607.
- 21. In the oxazolidines (e.g. syn-15) depicted in this paper, anti and syn describe the relative stereochemistry of the oxazolidine hydrogen (H²) and the hydroxyl group as drawn.
- 22. Eames, J.; Mitchell, H. J.; Nelson, A.; O'Brien, P.; Warren, S.; Wyatt, P. *Tetrahedron Lett.*, **1995**, *36*, 1719-1722.
- 23. Redlich, H.; Schneider, B. Liebigs Ann. Chem., 1983, 412-424.
- 24. For a review on the use of cyclic sulfates and sulfites in synthesis, see: Lohray, B. B. Synthesis, 1992, 1035-1052; Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev., 1994, 94, 2483-2547.
- 25. Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc., 1988, 110, 7538-7539.
- 26. Ashby, E. C.; Gurumurthy, R.; Ridlehuber, R. W. J. Org. Chem., 1993, 58, 5832-5837.
- 27. Kim, B. M.; Sharpless, K. B. Tetrahedron Lett., 1989, 30, 655-658.
- 28. Hoye, T. R.; Crawford, K. B.; J. Org. Chem., 1994, 59, 520-522.
- 29. Tidwell, T. T. Org. React., 1990, 39, 297-575.
- 30. J. M. Hook, Synth. Commun., 1984, 14, 83-88.
- 31. He, X-C.; Eliel, E. L. *Tetrahedron*, **1987**, *43*, 4979-4987. See also: Matsubara, S.; Takahashi, H.; Utimoto, K. *Chem. Lett.*, **1992**, 2173-2176.
- 32. Ko, K-Y.; Frazee, W. J.; Eliel, E. L. Tetrahedron, 1984, 40, 1333-1343.
- 33. Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett., 1968, 2199-2204.
- 34. Luche, J-L. J. Am. Chem. Soc., 1978, 100, 2226-2227; Gemal, A. L.; Luche, J-L. J. Am. Chem. Soc., 1981, 103, 5454-5459.
- 35. Hoppe has suggested a similar Felkin transition state to rationalise the stereoselectivity of additions to some structurally related keto oxazolidines (see reference 12a).
- 36. Chelation of cerium between ketone and phosphinoyl oxygens in Luche reductions is of course well established: Hutton, G.; Jolliff, T.; Mitchell, H.; Warren, S. *Tetrahedron Lett.*, **1995**, *36*, 7905-7908.
- 37. Asami, M.; Mukaiyama, T. Chem. Lett., 1983, 93-96.
- 38. For an alternative electrochemical method of deprotection of oxazolidines, see: Harder, T.; Löhl, T.; Bolte, M.; Wagner, K.; Hoppe, D. *Tetrahedron Lett.*, **1994**, *35*, 7365-7368.
- 39. Pirkle, W. H.; Sikkenga, D. L.; Pavlin, D. S. J. Org. Chem., 1977, 42, 384-387.